1	(a)	(i) (ii)	different boiling points methane or water or petroleum or named petroleum fraction or alkane	[1]
			Any TWO	[2]
	(b)	(i) (ii)	volume decrease for forward reaction or fewer moles of gas on products side favoured by increase in pressure or increase in pressure moves position of equilibrium to rig increase	[1] [1] ht [1]
		(iii)	300 to 600 °C 1:3 volume ratio iron (catalyst)	[1]
			Any TWO	[2]
	(c)	(i)	proton hydrogen <u>ion</u> or H ⁺ ONLY [1]	[2]
		(ii)	correct equation molecular or ionic $NH_3 + HCl = NH_4Cl$ $NH_3 + H^+ = NH_4^+$ accept NH_4OH	[1]
	(d)		measure pH or add universal indicator or pH meter ammonia has lower pH if numerical values given	[1]
			must be appropriate that is above 7 with ammonia having the value or correct colours, green and blue are acceptable OR measure conductivity ammonia has poorer conductivity	e lower [1] [1] [1]

(e) (i) correct structural formula [1]

[1] [1]

Question	on Answer		
2(a)(i)	pressure in range 150–300 atmospheres/atm; temperature in range 370–470 °C; iron (catalyst); balanced equation: $N_2 + 3H_2 \rightarrow 2NH_3$; equilibrium/reversible;	5	
(a)(ii)	manufacture of fertilisers/nylon/nitric acid/cleaning agent(allow oven cleaner)/hair dye/urea/refrigeration/explosives;		
(b)	H H N N H H H H M1 all shared electrons correct (5 bonds); M2 exactly two non-bonding electrons on each N and no additional non-bonding electrons;	2	
(c)(i)	/H⁺ acceptor;	1	
(c)(ii)	$\begin{array}{rcl} _{2}H_{4} & + & H_{2}O) & \rightarrow & N_{2}H_{5}^{+} & + & OH \ ; \\ \textbf{or} \\ (N_{2}H_{4}) & + & 2H_{2}O & \rightarrow & N_{2}{H_{6}}^{2+} & + & 2OH \ ; \end{array}$	1	
(d)(i)	rain/effect of acid rain/(photochemical) smog/(producing) low level ozone;	1	
(d)(ii)	M1 nitrogen and oxygen (from the air) react/combine or word equation; M2 at high temperature/spark/very hot;	2	

Question	Answer	Marks	Guidance
3(a)(i)	(Haber process makes) ammonia/NH ₃ ;		
	(ammonia converted into) fertilisers/nitrates/ammonium salts or names or formulae of examples e.g. ammonium nitrate/NH ₄ NO ₃ /ammonium sulfate/(NH ₄) ₂ SO ₄ /calcium nitrate/Ca(NO ₃) ₂ /urea/CO(NH ₂) ₂ ;	2	 A 2 marks for 'ammonia is a fertiliser' A ammonia is used to make sodium nitrate Haber process used to make fertilisers gets second mark only
(a)(ii)	it (refers to sodium nitrate)/sodium nitrate would dissolve (in rain)/soluble (in water)/wash away/leach/drain off;	1	 A reacts with water I reference to fertiliser R sodium reacts/dissolves A because they are not dissolved by rainfall (implication is in desert)
(a)(iii)	potassium (is required by plants as well as nitrogen)/NPK;	1	comments about pH/better for soil/%N higher/reactivity of potassium I comments about what K does for plants e.g. combat disease
(b)(i)	$_{3} \rightarrow 2 Na NO_{2} + O_{2}$		
	species; balancing;	2	A multiples I state symbols/word equation

Question	Answer	Marks	Guidance
3(b)(ii)	(colour changes) from pink/purple; to colourless/decolourised;	2	I clear/discoloured/effervescence I brown fumes/brown gas NOTE: stays pink or purple gets first mark but turns purple or pink is 0
(b)(iii)	the more reactive the metal the lower rate of decomposition/more difficult the decomposition/more stable the nitrate/more energy needed to decompose/decomposes at higher temperature ora;	1	A less (extent the) decomposition A reactive metals produce nitrates difficult to decompose ora i.e. comparatives not essential A the more reactive the metal the less it decomposes is acceptable because we can assume that <i>it</i> refers to the nitrate BOD A inverse relationship with further qualification A group 1/reactive metals produce nitrite (and oxygen) and less reactive metals produce oxide (+ $NO_2 + O_2$) (both required for mark) I less products (unqualified) R less products/metals decompose
3(c)(i)	(changes from) blue solid/blue crystals; black solid formed;		 R precipitate A one mark out of the first two for changes from blue to black (without solid or crystals)
	brown gas/brown vapour/(pungent) smell;	3	I red/melt I water/steam/condensation given off I reference to glowing/burning splints/ colourless gas/effervescence I names/formulae

Question	Answer	Marks	Guidance
3(c)(ii)	Avogadro('s) number/constant/ 6.02×10^{23} ; COND particles;		A any values from 6 to 6.023 ×10 ²³ A atoms/ions/molecules/electrons
	OR (the number of particles which is equal to the number of atoms in) 12g of carbon 12; COND atoms;		A one mark for reference to C12 A equivalent statement for any element or compound e.g. 32 grams of oxygen(1) COND
	OR the mass in grams which contains Avogadro('s) Number; COND particles;		$\frac{\text{molecules}}{\text{COND}}/O_2(1) \text{ e.g. 16 grams of oxygen (1)}$
	OR (the amount of substance which has a mass equal to) its <u>relative</u> formula mass/RFM/ <u>relative</u> atomic mass/Ar/ <u>relative</u> molecular mass/Mr/molar mass; COND in grams;		
	OR (the amount of substance which has a volume equal to) 24 dm ³ ; COND of a gas at RTP;	2	A different volumes under different conditions e.g. 22.4 dm ³ at STP or volumes in different units e.g. 24 000 cm ³ at RTP
(c)(iii)	(number of moles of CuO formed =) 0.03 ;		
	M2 (number of moles of $Cu(NO_3)_2 xH_2O$ in 7.26g =) 0.03 ;		ecf same as M1
	M3 (mass of 1 mole of Cu(NO ₃) ₂ .xH ₂ O 7.26 \div 0.03 =) 242 (g); (mass of 1 mole of Cu(NO ₃) ₂ is 188g)		ecf 7.26 ÷ M2
	M4 the value of x = 3 ;	4	ecf M3 – 188 ÷ 18